当前位置: 首页> 书评> 正文

欧几里得·几何原本《读完第一卷》

  • 小小评论家小小评论家
  • 书评
  • 2023-03-26 01:33:28
  • 76

刚刚读完第一卷。仅就第一卷而论,五个公理加五个公设,就完成了四十八个最要紧的命题的证明无论如何都是一种“荣耀”!。读过第一卷,才明白为什么要强调“尺规作图”的标准,欧几里德已经将其归结为最初的三个公设:两点定线,点距定圆,线可延长。倘若相信此三点,并相信直角都是相等的,即可完成前二十八个和第三十一个命题的论证。当然,如果你同样肯定了第五公设的合理性,那你就可以继续完成剩下的十九个命题,包括第四十七个,著名的勾股定理。

欧几里德无意将第五公设视为真理。但是没有此补充假设,证明就变得十分困难。错角相等自然可以演绎出平行的直线,但平行的直线却无法推导出错角相等。我曾经就此对臆造的“另一种”平行线展开某种直观的遐想——两条正逐步靠近但永远无法相交的线——与以“错角相等,两线平行”的第二十七命题为依据、以第三十一命题为手段所产生的平行线有根本的不同。但我很快发现了自己的错误,对于一对尺规作图产生的平行线来说,当它与任何一条别的直线相交,仍然无法得出错角相等(或同旁内角和等于二直角)的结论。事情变得十分诡异,这样的情形在直观上几乎不是个问题,可是,逻辑总是严肃得可怕!

据说高斯十几岁就意识到这一问题,并预言了一门全新几何学的诞生。我碌碌二十五岁人生,如果不经提醒,恐怕永远对之熟视无睹吧!

当然,也许有人会对这样一本陈年旧物毫无兴致,因为它离“数学”太过遥远,不过一些线线角角。那他或她可能就大错特错了。当您习惯于长乘以宽计算矩形的面积或底乘以高的一半计算三角形的面积并加以横向比较的时候,您可知背后的“面片”拼接的依据?当您习惯性的为2开方,并得到一个称为无理数的司空见惯的东西,您又知道它经历怎样的思想演进?对于大多数人而言,对数学的认知还是不知其所以然的表面功夫,就像叶大师“刮了一层昆曲的皮”。

如果想从最本源的命题出发,一步步的演绎,深入认知每一个数学范畴的思想和依据,也许《原本》就是个不错的起点!

我会努力啃掉这本书!

阅读全文